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An ageostrophic version of Phillips’ model is studied. All instabilities found are 
systematically interpreted in terms of resonance of wave components. The instability 
occurs if there is a pair of wave components which propagate in the opposite 
direction to the basic flow and these wave components have almost the same 
Doppler-shifted frequency. A new instability, identified as a resonance between the 
Kelvin wave and the Rossby waves, is found a t  Froude number F % 0.7. The Rossby 
waves are almost completely in geostrophic balance while the ageostrophic Kelvin 
wave is the same as in a one-layer system. Doppler shifting matches frequencies 
which would otherwise be very different. This instability is presumably the 
mechanism of the frontal instability observed by Griffiths & Linden (1982) in a 
laboratory experiment. Ageostrophic, baroclinic instability with non-zero phase 
speed is also observed in the numerical calculation. This instability is caused by 
resonance between different geostrophic modes. 

1. Introduction 
Since the pioneering works of Charney (1947) and Eady (1949), baroclinic 

instability has been of interest in geophysical fluid dynamics and studied by many 
researchers theoretically and experimentally (Hide & Mason 1975). The mechanism 
of this instability is most simply illustrated by Phillips’ two-layer model (Phillips 
1954). In the model, baroclinic instability occurs when two layers have opposite 
gradients of potential vorticity (Pedlosky 1979). Because the timescale of this 
phenomenon is usually very long, most of these studies were done in a framework 
of low-frequency quasi-geostrophic dynamics in which gravity waves are excluded 
a priori. 

Kelvin-Helmholtz instability has also been well known since the work of Kelvin 
(1871). For this instability, gravity waves are essential. Therefore it has been studied 
mainly in a non-rotating frame. Although these two instabilities may occur in the 
same configuration (for example, a two-layer model with basic shear and rotation), 
they have been discussed in different contexts and never considered together, except 
by Orlanski (1968). 

Recently, Ripa (1983) generalized the stability criterion for the quasi-geostrophic 
model (essentially the Rayleigh-Fjortoft theorem) to shallow-water equations. This 
criterion is interpreted more intuitively by Hayashi & Young (1987) : instability 
occurs when a wave having positive disturbance momentum resonates with another 
wave having negative disturbance momentum. The resulting unstable mode has zero 
disturbance momentum. This is not a sufficient condition for instability, but is still 



150 S. Xakai 

a very useful criterion because once we know the dispersion curve and disturbance 
momentum for waves, we can often predict where instability will occur. Although 
their model was a one-layer model, this result can be extended to a two-layer 
model. 

A most important point is that this criterion does not restrict the wave type that 
may cause resonance. Therefore, we can expect an instability with new combinations : 
Rossby waves and gravity waves. (Throughout this paper, waves related to a 
gradient of the basic potential vorticity are called Rossby waves. Therefore ‘Rossby 
wave’ includes all vorticity modes.) This is possible when basic shear is relatively 
strong so that the Doppler-shifted frequency of the Rossby wave has the same value 
as that of the gravity wave. In  this way two waves, which usually have different 
timescales, can resonate. This new instability is called Rossby-Kelvin (R-K) 
instability hereinafter. This name indicates the different types of waves that resonate 
in the lowest mode. This instability seems to have been observed in some studies on 
frontal instability, but it has not been recognized as an instability caused by 
resonance between two waves which are usually thought of as having very different 
frequencies. 

This new instability is studied using an ageostrophic version of Phillips’ model 
(two-layer channel model on an f-plane). In  $ 2 ,  basic equations, disturbance energy 
and disturbance momentum for a two-layer system are described. In  $3, a concept 
for the physical wave coordinate system is discussed. In  $4, interaction between 
wave components is discussed in the framework of physical wave coordinates, and a 
stability criterion for the two-layer model is deduced. Before discussing the new 
instability, it is helpful to look a t  conventional baroclinic and K-H instabilities in 
terms of the resonance of waves, see $55 and 6. In  $07 and 8, R-K instability is 
described in detail. In addition, the ageostrophic baroclinic instability found in the 
numerical calculations is described in $9. 

2. Basic equations, disturbance momentum and energy 

shown in figure 1. The linearized equations for perturbation are 
We consider a two-layer channel model on an f-plane with vertical shear flow as 

g‘h = Pz-P,, (14 

where (5,  y) and (u, w) are the (along-channel, cross-channel) coordinates and 
disturbance velocity components, h is the interfade displacement, p is the pressure, 
Dl is the total derivative a, + L$ a,, V, is the along-channel basic flow, f is the Coriolis 
parameter, g‘ is the reduced gravity (Apg) ,  H j  = H,Tsy is the depth of each layer, 
H ,  is the average depth, s is the slope of the basic interface, f(V, - U,)/g‘. Here, 
j = 1,2  denotes variables for upper and lower layers, the upper sign in f. corresponds 
to  the upper layer ( j  = 1 )  and the lower sign to the lower layer ( j  = 2 ) .  Boundary 
conditions for the equations are 

This is an ageostrophic version of Phillips’ model and both Rossby waves and gravity 
waves can occur in this system. 

wi = 0 at y = +Y,,,. (2) 
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FIGURE 1. Schematic diagrams of the model. 

Manipulating ( l ) ,  we obtain potential vorticity conservation 

Djqj+vjauQj = 0, (3) 

where q, is the disturbance potential vorticity (a, vi - av u3 & Qj h ) / H , ,  and Qi the basic 
potential vorticity f / H j .  Therefore potential vorticity IS conserved following 
particles. Introducing the particle displacement, q,, in the y-direction, equation (3) 
can be integrated to  give 

qj = - ~j 8, Qj? 

D,r, = U P  (4 b)  

where it is assumed that qj is initially zero. 
The other important invariants are momentum and energy. In particular, energy 

analysis has been of central importance to instability theory, and it has been 
discussed in terms of ‘wave ’ or ‘eddy ’ energy and ‘ mean ’ energy. However, we do 
not have a unique definition of ‘waveleddy’ and ‘mean’ for divergent flow, which 
makes energy analysis very confusing. For example, Orlanski (1968), Mechoso & 
Sinton (1983) and Hayashi & Young (1987) defined ‘waveleddy’ and ‘mean’ 
differently. The author prefers not to use these terms here to avoid confusion and so 
throughout this paper, discussion is in terms of a ‘disturbance’ quantity, which is 
defined by Hayashi & Young (1987). The disturbance quantity is simply defined as 
the quantity in the disturbed fluid minus that in the undisturbed. (This quantity is 
called a ‘wave’ quantity in some literature such as Cairns 1979.) The disturbance 
energy can be negative simply because a disturbed field does not necessarily have 
more energy than an undisturbed field, i.e. the field can be disturbed by extracting 
energy. 

Following Hayashi & Young (1987), disturbance momentum M is derived as 
follows : 

M = MR +Mg,  (54 

MR = -$(ma, Ql) 7 3  - t < w a ,  &A 773, ( 5 6 )  

M B = - ( h  u,> + (hu,), ( 5 4  

where the angle brackets denote a spatial average and (4) is used to derive ( 5 b ) .  The 
basic quantities and Q6 can be arbitrary functions of y. The derivation of (5)  is 
essentially the same as in Hayashi & Young (1987) (see their equation (2.31)) except 
that the present model has two layers. In Hayashi & Young (1987), MR and M ,  
(M, andM, in their notation) are called ‘mean’ momentum and ‘wave’ momentum. 
However, the author regards both momenta to be related to waves, because MR and 
M g  are associated with Rossby waves and gravity waves respectively as shown below. 



152 S. Sakai 

It will also be shown that these momenta have the same sign as those of the intrinsic 
phase speed e“ of the waves (the phase speed relative to  the basic flow). 

From the definition of the disturbance momentum, this does not depend on the 
frame of reference. In  fact, (5) does not include U, nor U,. The disturbance momentum 
is conserved if there is no external forcing because total momentum remains 
unchanged without external sources. For an unstable mode, the disturbance 
momentum must be zero because the disturbance grows without external sources 
(Hayashi & Young 1987). 

Similarly, disturbance energy E is derived as 

E = E,+&+E,, 

Ea = - t<u ,H; (a ,&, ) r~) -k (U,H; (a ,Q , ) r2 , ) ,  (6 b)  

4 = -(u,hu,)+(U,hu,), (6c) 

E, = ~ ( H , ( U ;  +v;) )  +~(H, (u ;  +$)) +i(g’h2). ( 6 4  

The disturbance energy is alvo conserved if there is no external forcing. Unlike the 
disturbance momentum, there is no simple classification of these energies E,, 4 and 
E,, In  particular, E, and & are not positive definite any more, and these terms have 
caused the confusion in the energy analysis. For example, in Mechoso & Sinton (1983) 
the ‘waveleddy’ energy includes only E,, which is positive definite, while in 
Hayashi & Young (1987) i t  also includes 4 and it  can be negative. Therefore the 
physical significance of the ‘waveleddy ’ energy depends entirely on its definition, 
but there is no physical reason why ‘waveleddy’ energy should include &. 

The disturbance energy E ,  however, has the following simple relation with the 
disturbance momentum M (Hayashi & Young 1987) : 

E = c M ,  (7) 

where e is the phase speed of the wave observed from a particular frame of reference. 
This is a great advantage of the ‘disturbance’ quantity, because we can obtain 
disturbance energy without the confusing equation (6). Also, this equation fits our 
physical intuition. Suppose the wave has been excited by a forcing moving at a speed 
c .  The total work done by the forcing is J CF dt = &, where F is the force applied to 
the field (dMldt = F ) .  Therefore the energy in the disturbed field must differ from 
that in the undisturbed one by cM. 

Once we accept (7), it  is obvious that the disturbance energy is not positive definite 
and i t  depends on the frame of reference, because c can be chosen arbitrarily by 
changing the frame of reference while M does not depend on it. This happens even in 
a simple example, as follows. Suppose a gravity wave packet is propagating in the 
upstream (positive) direction at an intrinsic phase speed e“ > 0 on a river flowing at 
a speed of - U < 0 in a non-rotating frame. The disturbance momentum (M = (hu))  
of this wave is positive. To excite the wave, we have to move the forcing pattern a t  
speed c = 6- U ,  giving positive momentum to the system. When the flow speed of the 
river is slow enough so that c is positive, the forcing does positive work against the 
river and therefore the disturbance energy must be positive. When the flow speed of 
the river exceeds the phase speed, however, the forcing pattern must be moved 
backward (the opposite direction from the momentum) a t  negative speed c. This 
means that the river does work against the forcing and the forcing extracts energy 
from the system when it  excites the wave. Therefore this causes negative disturbance 
energy. This is physically natural, and negative disturbance energy is not surprising, 
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although it sounds strange. Again for the unstable mode, the disturbance energy 
must be zero because an unstable mode grows without external energy input 
(Hayashi & Young 1987). 

Because the disturbance momentum (5 )  does not depend on the frame of reference 
and it is separated into two terms by the physical mechanism of the wave, the 
momentum analysis is more useful for a unique classification of instabilities. 
Therefore, we shall discuss the interaction of waves mainly in terms of disturbance 
momentum M or intrinsic phase speed I?, which has same sign as A?, rather than 
disturbance energy. We can get the disturbance energy from (7) if we need it. 
Hereafter, the basic flows U, and U, are set a t  U, and - V, for simplicity. This causes 
no loss of generality. 

Assuming a sinusoidal form of solution in the x-direction, 

and substituting (1 d )  into (1 c), (1) is rewritten in a vector form : 

Bl 2, -Al* f, = BIB * fz, 

Dz fz - A,. 3, = BzB* f,, 

where 

where 4 is an intrinsic frequency (w TkU,), a,(Hj*)  operates on wj as ay(H1 w,), and the 
superscript T indicates transpose vector or matrix. 

3. Physical wave coordinates 
Equation (9) is formally a sixth-order eigenvalue problem, although it can be 

reduced to a faurth-order problem (see Appendix A). If there is no singularity, i t  is 
not difficult to solve this problem and get a set of wave modes which are orthogonal 
to each other in an appropriate norm. However, it  is very difficult to understand 
these modes physically, because each mode includes all physical processes in the 
system. A great advantage of an orthogonal wave mode system is that each wave 
mode propagates independently. Namely, taking the set of the eigenvectors {en} of 
(9) as the basis of a coordinate system, (9) can be written in the following form: 

wx+s1*x = 0, (11) 

where s1 is a diagonal matrix, and x = (X1,X2,X3,. . .)' is a vector in the coordinate 
system. Each element of the basis en corresponds to a wave mode and X, represents 
its amplitude. A solution of this problem is expressed by summation of these free 
modes. Equation (1 1) is mathematically simple and beautiful, but it tells us nothing 
about the physical mechanism of the wave mode. If we do not mind accounting for 
interaction between wave modes, however, we can project (11) onto any coordinate 
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system with respect to an arbitrary basis. In  general (9) can be written in an 
arbitrary coordinate system with respect to a basis {eh> as follows: 

where x' is a vector in the coordinate system, Q' is a diagonal matrix and 4 and 
B, are matrices in which all diagonal components are 0. In  this coordinate system, the 
wave mode en is expressed by a summation Exlei. Although (12) is more 
complicated than ( l l ) ,  it can be useful in understanding the physics of the wave 
mode if each component of the coordinate has a physical meaning. For example, if 
e; represents a free wave in a subsystem of (9), which is simpler than (9), the wave 
mode in the full system (9) can be interpreted in terms of the interaction between the 
simple waves. 

If we assume p ,  = 0 in (1) or B = 0 in (9), the equations for the upper layer reduce 
to those of a one-layer system where we understand the physics of the eigenfunctions 
much better than in a two-layer system. The equation for this system is 

where Dl is an intrinsic frequency (o- kU,) and A, is defined in (10). If we look a t  this 
system moving with the basic velocity flow U,, (13) is equivalent to the equation for 
waves in a channel with sloping bottom and no basic flow. Each eigenvector of (13) 
el, corresponds to a topographic Itossby wave or a gravity wave, and any 
disturbance can be written as a summation of these waves, i.e. we can define a 
coordinate system with respect to eln. It is the same for the lower layer and we can 
define a coordinate system with respect to the eigenvectors of the lower layer {e,,}. 
Since we are familiar with the characteristics of these waves, a t  least we know what 
the dispersion curves for the waves look like, i t  is physically natural to use a 
coordinate system with respect to {e,,}U{e,,} which consists of two sets of 
coordinates for two one-layer systems. To avoid confusion of the two coordinate 
systems: {en} and {e,,} U {e,,}, the former is called the mathematical coordinate or 
wave mode and the latter is called the physical coordinate or wave component. 

The physical wave coordinate system in the present model is defined as follows. 
The adjoint equation of (13) is given by 

(14b) ) 
A =(- 0, if, kg'H1 

- if, 0, -ig'Hlay , 
k, -iaY, 0 

where * denotes complex conjugate and Al is the adjoint operator. Suppose 
el,, = ( u , , , ~ ~ ~ , p , , ) ~  is an eigenvector of (13). The eigenvector of (14) is given by 
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e:. elrn = d:n anmy (16a) 

d?n (CTn u1 n + q n  vl n + PTn P1n dy 

(16b) 

where an, is Kronecker's delta. Therefore, the amplitude X,, which is a component 
of the wave coordinate, is written as 

1 
J 

and satisfies 

= /(.I u:n Uln +a1 VTn v1n +yP:nPln) 9 dy, 

=-I(- 1 .:, 'li, + qn 6, +p:n gl) dy . 4 n 

The original variables are recovered by 

21 = ('liI(YL , 4 ( Y ) , A ( Y ) ) T  

The wave component in the lower layer (e2J and its corresponding coordinate are 
obtained in the same manner. To eliminate the suffix for the layer number, the wave 
coordinate for lower layer is denoted as y = (q, yZ, 8,. . . )T. 

If we discretize in the y-direction using N points, we have 6N wave coordinates (3N 
for each layer) and 6N eigenvalues. However, these eigenvalues include 2N of infinite 
value, and the present model reduces to an eigenvalue problem in N-dimensional 
space (see Appendix B). This is because the interaction between waves introduces 
some restriction on the freedom of the solutions. Physically speaking, the internal 
surface is not independent for the upper and lower layers and we have excluded 
external gravity modes from (9) by considering a rigid upper boundary. Therefore we 
shall discuss a N-dimensional subspace, which is spanned by orthogonal wave 
modes, in a 6N-dimensional coordinate system. 

4. Interaction between wave components 
In the physical coordinate system defined above, each wave component does not 

interact with the other components in the same layer, but does interact with those 
in the other layer through pressure (see (9b)). As shown in Appendix A, (9) can be 
rewritten in the physical coordinates as 

6 FLM 202 
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FIQURE 2. Frequency of the wave modes when two wave components have almost the same 
frequencies (solid lines in left-hand panels) for (a )  dIdz < 0 and ( b )  GIG2 > 0. Dotted lines shows 
Doppler-shifted frequencies 5, + kU, and 0,- kU, and the broken line shows the unstable mode. 
Right panels show schematically the relation between U,, GI and G2, kU, = 1 ,  w2 = 1 for [a),  
d, = 2.5 for (b)  and only dl is varied. 

where S,, and 3,, are the intrinsic frequencies of free modes in a one-layer system 
for the upper and lower layer, X, and Y, are the amplitudes of the modes in the upper 
and lower layer. The absolute value of the interaction coefficient en, is less than 1 
(Appendix A). The basic interaction between two components can be written as 

These equations reduce to 

- p  = 0 ,  (.- 2( 1 - €€*) 

where 

Now we assume that 3, and 3, are real (these components are stable). In the present 
case, this is assured by Ripa's theorem for a one-layer system. The theorem 
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guarantees stability if there is an a such that &,(a- U )  2 0 and H 2 (a- U)‘ for all 
y .  A constant 01 = U satisfies these conditions and therefore this system is stable. 

When GIG, > 0, ,!L is always positive and (21) gives real w .  Therefore, the wave 
modes are stable. When G,3, < 0, ,LA is negative for kU, = - (4jl-G2)/(l  -e2) and (21) 
gives complex eigenvalues. If e is small enough, the instability occurs when 
2, + kU, x 3, - kU,. These situations are schematically shown in figure 2. The 
condition for stability can be summarized as follows. 

The flow is unstable if there is a pair of wave components such that:  
(i) they propagate in the opposite direction to the basic flow (3,G2 < 0);  
(ii) they have almost the same Doppler-shifted frequency (G, + ICU, x 3,- kU,) ; 
(iii) they can interact with each other (enm += 0). 
This is identical with the stability criterion of Hayashi & Young (1987). Note that 

conditions (i) and (iii) hold even when E , ,  is not small. As shown later, both gravity 
waves and Rossby waves have disturbance momentum in the direction of the phase 
speed relative to the basic flow. Therefore condition (i) can be rewritten as that two 
waves have disturbance momentum in opposite directions. With the combination of 
such wave components, the disturbance momentum of the sum can be zero and can 
grow without external forcing. The amplitudes of wave components in the unstable 
mode are determined so that the disturbance momentum for the wave mode is zero. 
The disturbance energy for the unstable mode is automatically zero because of (7). 

5. Baroclinic instability and Rossby waves 
In this and the next section, conventional baroclinic instability and Kelvin- 

Helmholtz instability are described in the physical wave coordinate system as 
examples of the instabilities caused by the resonance of waves. 

In this section, (9) is considered in a geostrophic limit, and the baroclinic 
instability is interpreted as a resonance between Rossby waves. Before considering 
the interaction, we have to obtain the wave components in each layer by solving the 
equation for a one-layer system (13) instead of (9). If the variation of the depth of 
the layers AH = sY,,, is small (the channel is narrow), the matrix A, becomes 
independent of y and we can assume the solution in the upper layer has following 

(22) 
form : ẑ , = Xn(u’,  v’,p’)Texp (il, y ) ,  

where u’, v‘ and p‘ are independent of y .  Substituting (22) into (13) with the quasi- 
geostrophic approximation, we get an equation for a Rossby wave, 

” 

DlX,-31nXn = 0, (23a) 

where 

and the corresponding eigenvector is 

ik 
e,, = (” - - exp (il, y ) .  f ’  f 
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This set of Rossby waves forms the physical wave coordinate system. In this 
coordinate system, the disturbance is expressed in a vector form, 

x = (X, ,X, ,  . . .)T. ( 2 5 )  

Namely, the disturbance is a superposition of Rossby waves. These Rossby waves in 
the upper layer have negative intrinsic phase speed. 

The Rossby wave components in the lower layer are obtained in the same manner. 
The eigenvector for the lower layer has the same form as that in the upper layer and 
its intrinsic frequency is of opposite sign, 

The dispersion curves for the waves in both layers are shown by broken lines in 
figure 3. These dispersion curves intersect a t  k = 1 / ( 4 2 R )  and k = 0. From the 
discussion of previous sections, we can expect instability around the intersection 
points. 

Substituting ( 2 3 )  and ( 2 6 )  into ( 1 9 ~ ) )  the interactions between Rossby waves are 
expressed from (19) as follows : 

1 1 

DIX,-S,,X, = EnD1 Y,, 

Bz Y, + G,, Y, = E ,  D2Xn,  

1 
2R21kI2 + 1 

En = 

A wave component in the upper layer can interact only with a lower component that 
has the same spatial structure, because others are orthogonal. Eliminating X, and 
Y, in (27 ) ,  we obtain the frequency of the wave mode as 

Note that we have not solved the full equation (9) directly to  get ( 2 8 ) .  We have only 
solved the equations for subsystem ( 1 3 ) ,  which is much easier. The wave coordinate 
system in this section is identical with the Fourier transform, which is used in Phillips 
(1954) and Pedlosky (1979), because each wave component has sinusoidal form. The 
wave coordinate system, however, can be applied even when the wave does not have 
sinusoidal form and the Fourier transformation fails to simplify the problem. 

The dispersion curves of wave modes are shown by heavy solid lines in figure 3 .  
When Ikl is sufficiently small, the wave mode becomes unstable because of the 
interaction. As Ikl becomes large, dispersion curves of wave modes asymptotically 
approach those of the wave components. This is because the interaction coefficient 
E ,  becomes smaller and the difference of the Doppler-shifted frequencies in both 
layers becomes large. 

Using (26), the ratio of wave components in a wave mode is given by 

O )  (07, + kU, - W )  
(29 )  
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-2  

FIQURE 3. Frequencies of the Rossby wave components (broken lines) and wave modes (heavy 
solid line) when I = 0. 

When k is sufficiently large (w  x kkU,), the wave mode is almost identical with the 
wave component (XJY,  + 0 or co). When k is small and the wave mode is unstable, 
w is pure imaginary and two wave components have same amplitude (lXn/Ynl = 1). 

From (5),  the mean momentum and wave momentum for the wave component in 
the upper layer are 

M ,  = 0. (30b)  

Therefore the Rossby wave in the upper layer has disturbance momentum 
(M = MR+Mg)  in the direction of the intrinsic phase speed (negative direction). Simi- 
larly the Rossby wave in the lower layer has positive intrinsic phase speed and 
positive disturbance momentum. For the unstable modes, disturbance momentum 
vanishes because the two wave components have disturbance momentum in 
opposite directions and have the same amplitude. 

6. Gravity waves and Kelvin-Helmholtz instability 
We consider a two-layer channel system in a non-rotating frame (f = 0 and 

H I  = H ,  = H,). Again we solve the equations for a one-layer system (13) to obtain 
wave components in the upper layer. Suppose the solution has a plane-wave form 
and is propagating only in the x-direction, viz. 

(31) 

where u’,p’ are independent of y. From (13) we obtain the intrinsic frequency of the 
wave components, 

fl = (a’, 0, p y ,  

fq = k(g’H,)i, (32 a )  

&; = -k(g’H,$ (32W 

The corresponding eigenvectors are 
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FIQURE 4. Frequencies of the gravity wave components and wave modes. The wave components 
in the upper layer are indicated by broken lines and the wave components in the lower layer are 
indicated by dotted lines. The heavy solid line indicates the frequency of the wave mode. 

The wave components for the lower layer are obtained similarly. Because A, = A,, 
the eigenvectors and their intrinsic frequencies in the lower layer are exactly the 
same as those in the upper layer: 

The phase speeds of wave components for the upper and lower layers are shown in 
figure 4. X+ and X- are wave components in the upper layer and Y+ and Y- are wave 
components in the lower layer. Superscripts + and - indicate the direction of the 
intrinsic phase speed. These phase speeds intersect a t  141 = 0 and (g’H,);. From the 
previous section, we can expect an instability a t  lU,l = (g’H,);, because wave 
components in resonance have phase speeds in the opposite direction to  the basic 
flow. 

Substituting (33) and (34) into (19c), we get 

BIX+-S+X+ = B&Y+-€Y-), (35a) 

B1Xx--6-X-  = B1(-eY++€Y-), (35b) 

OzY+-cG+Y+ = $(EX+-EX-), 

QY--cG-Y- = D,(-€x++EX-), 
E = ’  2‘ (35e) 

(36) 

The frequency of the wave mode in the two-layer system (35) is given by 

o = & k(&’H, - q);. 
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The phase speeds of these wave modes are shown by heavy lines in figure 4. 
As expected, the wave modes become unstable near the intersection points 
lU,l = (g'H,)i. Although there are four wave components, there are only two 
wave modes, because we have excluded external modes by the rigid-lid boundary 
condition a t  the top surface. The barotropic pressure field (pl + p , )  can propagate a t  
infinite speed and therefore its curve has disappeared from figure 4. 

When U, = $(g'H,)i, the frequency of the wave mode is tangent to that of the wave 
components. At this point (35) reduces to 

4 x- - 07-x- = 0, 

f i2  Y+ - G-Y+ = 0, 

(374  x+ = y- = 0. 

This means that the wave components X- and Y+ can be propagated without 
interaction. Therefore each wave mode consists of only one component. This is 
because the disturbance of the interface due to the wave component X- in the upper 
layer is seen from lower layer to be a t  rest. The fluid in the lower layer is just 
advected by the basic flow. This point is very important when we consider the full 
equations of motion ( l ) ,  because the Rossby wave, which has very small intrinsic 
phase speed, can interact with the gravity wave in the other layer. 

The momenta for these wave components are 

M ,  = 0, (38a)  

Again the wave components have disturbance momenta in the direction of their 
intrinsic phase velocity. 

7. Rossby-Kelvin instability 

equations are 
Scaling time by l/f, x and y by R = (g'H,/Z);/f ,  h by H,,  non-dimensional 

(39a)  fi' 1 1  2' -A' 1 1  .zf = fi' 1 B' .zf 2 ,  

D;z;-AL-z; = fi;B'-z;, (396) 

( 3 9 4  
i, 
0, A! 3 = ( -1, O:  

2k'H, -2iHa;+2iF, 0 

where fii = i(w f kF), F is Froude number (F E U, / (gH, ) ; )Hi  is the non-dimensional 
depth H; = 1 f Fy, and a prime indicates non-dimensional variables. For clarity, 
hereafter the prime is dropped and only non-dimensional variables are used. 

In non-dimensional units, the Kelvin wave component has an intrinsic phase 
speed of x k d 2 ,  and F can be thought of as the basic velocity. When F - 1 / 4 2  
(U, - $(g'H,)i), the Kelvin wave in the upper layer has a negative phase speed of 
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- - l / d 2 ,  which is the basic velocity in the lower layer. I n  the lower layer 
we have a group of Rossby waves which have a small positive intrinsic phase speed. 
Therefore, an instability is possible because of the resonance between the Kelvin 
wave in the upper layer and the Rossby waves in the lower layer. 

If we neglect wave components that  have different frequencies far from the 
resonance, (19) becomes 

(40a) Qx - 3,x = B&, + E 2  yz + . . . + 8,  Y,), 

$ ~ - 3 , Y , = $ E : X ,  (40b) 

D 2 ~ - G o 2 y 2  =&z*X, (404 

D, Y,-3, Y, = $ S ~ X ,  (404 

where X is the amplitude of Kelvin wave in the upper layer and Y, is the amplitude 
of nth Rossby wave. Neglecting the variation of the depth H j  and assuming the 
following form of the wave components and frequencies: 

2kF 
3n - 2(kZ+Zi)+l’ 

we can roughly estimate the interaction coefficient E ,  : 

E n  x 21, 
(el; + 1)  [Y,,, (2(k2 + Z i )  + 1 ) p ’  

where the relatively small quantity exp ( -  Y,,,) is neglected. Equation (42) indicates 
that the lower-mode Rossby waves interact with the Kelvin wave more strongly 
than do the higher modes. 

Figure 5 shows the solution of (40) for three Rossby components (n = 1,2,3) with 
= l / d 2 ,  k = 2.5, In  this figure, 3,, 3,, and 8, are fixed while only F and fil and 

D, is varied from 0.6 to  0.9. The dotted line shows the phase speed of each wave 
component. The phase speed of the Kelvin wave component increases as F increases, 
and the phase speeds of Rossby wave components decrease. Except around a point 
where these curves intersect, each wave mode is almost identical with a wave 
component. Between points P and Q in the figure, however, it is somewhat 
complicated. As F increases, the Kelvin wave component starts to interact with the 
third Rossby component creating one unstable mode, and it bifurcates into a Kelvin 
wave mode and a first Rossby mode at a point Q. The stable Rossby wave modes are 
smoothly substituted for the next modes between P and Q. Each wave mode is a 
mixture of all wave components in resonance there. 

The phase speed of the Kelvin wave mode is shifted downward by the interaction. 
This is because the existence of the Rossby wave ‘stiffens’ the lower layer and the 
restoring force is slightly increased. Therefore, the absolute value of the phase speed 
of the Kelvin mode is increased by the interaction. 
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FIGURE 5. Resonance between Rossby waves and a Kelvin wave, calculated from (40) and (42) 
for Y,,, = l / d 2 ,  k = 2.5. Dotted line shows the phase speed of each wave component. 

8. Numerical confirmation 
Equation (39) is directly solved by discretizing the y-interval following Hayashi & 

Young (1987). For details of the numerical calculation, see Appendix B. Although we 
have three parameters (k, Y,,, and F ) ,  A& = FY,, is fixed at a constant value so 
that we can survey over a wide range of (k,F)-space. When AH 2 1, the interface 
intersects with the surface and the bottom. 

Figure 6 shows the maximum growth rate for AH = 0.5. Clearly, several types of 
instability can be seen. At the lower-left corner, baroclinic instability occurs. At the 
top, Kelvin-Helmholtz (K-H) instability occurs. The R-K instability occurs a t  
F - (1/2); due to the resonance between Rossby waves and a Kelvin wave. The 
branch at  the upper right is an instability caused by a resonance between Rossby 
waves and the first Poincarh wave. 

Dispersion curves for the waves along the section indicated by the dashed line in 
figure 6 are shown in figure 7. The waves change their scale, keeping the aspect ratio 
k/l, - 1 (1, = n/Y,,,) along this section. In this figure the Rossby waves have a phase 
speed x +F, which is the velocity of the basic flow, and resonate a t  low wavenumber 
to produce a baroclinic instability. The phase speed of the Kelvin wave is about f 1 
at  low Froude number and decreases as the Froude number increases. The Kelvin 
waves resonate a t  high Froude number (F  w 1)  to produce K-H instability. The 
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FIGURE 6. Maximum growth rate for AH = FY,, = 0.5. The dashed line indicates the section 
shown in figure 5. Contour interval is 0.02. 
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FIGURE 7. Phase speed (a )  and growth rate ( b )  of the modes in the section (3F = k) indicated 
by a dashed line in figure 6. The small area boxed by a dotted line is shown in figure 8. 
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FIGURE 8. Detail of the resonance between a Kelvin wave and Rossby waves. 

resonance between Rossby waves and the Kelvin wave is also clearly seen a t  the 
intermediate value of the Froude number (F  x 0.7). At this point, the Kelvin wave 
component interacts with all Rossby wave components resulting in only one unstable 
mode. Figure 8 shows the resonance in detail. This figure agrees well with figure 5. 

The pressure fields and the interface height for the unstable mode at maximum 
growth rate are shown in figure 9. The reader can clearly recognize a Kelvin wave in 
the upper layer. In  the lower layer the velocity is almost parallel to the pressure 
contour lines. This pattern of the wave is almost a superposition of just the first and 
second Rossby wave components. To measure the geostrophy, a geostrophic index 
(+ is defined as follows: 

> .  (43) 
q = ( f  Vj@,Pj)  -fUjr(”Pr)j) 

(%PjlZ + 
When the flow is in complete geostrophic balance, G = 1. The geostrophic indexes are 
1.005 for the lower layer and 0.211 for the upper layer. The flow in the lower layer 
is in almost complete geostrophic balance. 

The wave amplitude in the lower layer is much smaller than that in the upper layer 
and therefore the pattern of the interface height is similar to the pressure in the upper 
layer. (Note that the contour-line intervals differ by an order of magnitude between 
the upper and lower layers.) This is because the Rossby wave is much more effective 
in containing the disturbance momentum than is the Kelvin wave. The disturbance 
momentum for the Rossby wave in the lower layer is estimated in non-dimensional 
units as 

Provided that 3F = k x 1, the disturbance momentum for the first Rossby wave 
component on this section is given by 

m x 18F(vi). (45) 
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FIGTTRE 9. Pressure and velocity fields of R-K instability in (a )  the upper layer and (c) the lower 
layer at the maximum growth rate (F = 0.675, k = 2.025). Interface height is shown in ( b ) .  The 
dotted lines indicate negative contours. The geostrophic indexes are (a) 0.211 and (c) 1.005. 
The contour intervals are (u)  0.2. ( b )  0.1 and (c) 0.02. The length o f t h e  arrows is proportional t o  
i(uj, vj)io.4 

The non-dimensional disturbance momentum for a Kelvin wave in the upper layer 
is 

m x M ,  = (hu l )  x -(dZu:). (46) 

The disturbance momentum for a Rossby wave is larger by one order of magnitude 
t>han that of a Kelvin wave with the same amplitude when Rossby-Kelvin instability 
occurs (F x 0.7). Therefore the Kelvin wave component must dominate the Rossby 
wave component in the unstable mode to cancel the disturbance momentum. The 
disturbance momenta for modes with negative phase speeds are shown in figure 10. 
(Note that the scale for negative momentum is exaggerated by 10). The disturbance 
momenta of Rossby modes are positive and almost proportional to F .  The 
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FIGURE 10. Disturbance momentum for the waves with negative phase speed. The disturbance 
momenta are normalized by wave amplitude (A2 = (a: + 9: +a$ + 8;)). The scale for negative 
momentum is multiplied by 10. 

disturbance momenta for gravity modes are negative and much smaller than Rossby 
modes. 

9. Ageostrophic baroclinic instability 
In the numerical calculation described in the previous section, baroclinically 

unstable modes with non-zero phase speed are observed. These modes have not 
been found in the quasi-geostrophic studies of the baroclinic instability. Figure 11 
shows dispersion curves for Rossby waves and unstable modes in the boxed section 
of figure 7 ( a )  but notice the difference of scale. The dispersion curves for quasi- 
geostrophic Rossby components (23 b)  are shown by dotted lines. The dispersion 
curves of stable modes are almost the same as the quasi-geostrophic wave modes (28). 
However, the unstable modes bifurcate to two branches when the wavenumber is 
sufficiently small. From figure 7 ( b ) ,  it is clear that these modes are generated by 
resonance between the first and second unstable modes. Two unstable modes with 
different growth rates resonate, resulting in two unstable modes with the same 
growth rate and phase speed but in opposite directions. 

In the quasi-geostrophic theory of the baroclinic instability, wave components 
with different wavenumber cannot interact with each other (en,,, = 0 for n + m).  In  
this ageostrophic model, however, it is possible for the first Rossby wave component 
in the upper layer to interact with the second Rossby wave component in the lower 
layer, because the wave components are not symmetric about the centre of the 
channel (figures 12, 13), and (19c) gives a non-zero interaction coefficient enm. Note 
that the quasi-geostrophic approximations fails to obtain this bifurcation despite the 
fact that the modes are almost in geostrophic balance. This is because the symmetry 
breaking, which is responsible for a non-zero mode coupling coefficient, is of the order 
of the Rossby number squared. 

This bifurcation occurs a t  the intersection point of the dispersion curves for the 
second Rossby components. This is due to the phase lags between wave components 
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FIGURE 1 1 .  Phase speed of the lowest ageostrophic baroclinic unstable mode (thick curve). The 
phase speed is normalized by the non-dimensional velocity of the basic flow F .  The dashed line 
denotes unstable modes. The dotted lines denote first and second quasi-geostrophic Rossby wave 
components (2 (w, + fcF)/kF).  

1 

1 

FIGURE 12. Schematic diagram of the pressure field for the first (solid lines) and second (broken 
lines) Rossby components. The slight asymmetry is order Rossby-number squared and is not 
captured by the quasi-geostrophic approximation. 

in the unstable modes. From (29) the phase lag between two components in one wave 
model is 

(47) 

where o = ip and kU, 9 y is assumed. Therefore the two components in the unstable 
mode interact in phase (la1 < 90") when 9, + kU, > 0 and out of phase (Iel > 90") 

e = arg e) % arg (9, + k ~ ,  + iy), 
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FIGURE 13. Same as figure 9, but for the ageostrophic baroclinically unstable mode (F = 0.075, 
k = 0.225). The contour intervals are (a ,  c )  0.3 and (b) 0.2. The geostrophic indexes are (a) 0.995, 
( c )  1.001. 

when 3, + ktJ, < 0. When the second mode becomes unstable, the wave components 
in the first mode interact out of phase (figure 1 I). If the first component in the upper 
layer interacts with the second mode in the lower layer, the resulting second 
component in the upper layer is not compatible with the first component in the lower 
layer (figure 14a). Therefore resonance between unstable modes occurs only when 
both unstable modes have the same phase relation (figure 14b). 

10. Discussion 
Although this is the first time that the R-K instability has been discussed 

explicitly in terms of resonance between a Kelvin wave and Rossby waves, R-K 
instability seems to have been observed in several studies. 

Griffiths & Linden (1982) experimentally studied a density front in a two-layer 
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FIGURE 14. Phase relation of the wave components in the first and second baroclinic 
unstable modes. 

system with uniform potential vorticity in the upper layer. They found that the front 
was unstable and the unstable mode remained almost stationary when the amplitude 
was small. This instability can be interpreted in the present context as follows. In  
their model, the basic flow in the upper layer had a velocity of (g'H); relative to the 
lower layer a t  the edge of the front. Therefore the gravity wave propagating in the 
upstream direction can interact with a Rossby wave in the lower layer which has a 
very small phase speed compared with the gravity wave. The resulting unstable 
mode is expected to be almost stationary. Paldor (1983) showed that this frontal 
system was completely stable if the lower layer had infinite depth and Killworth, 
Paldor & Stern (1984) showed that finite depth of the lower layer destabilized the 
front. These two studies support the contention that the instability observed in 
Griffiths & Linden (1982) was an R-K instability, because the infinite depth of the 
lower layer results in zero potential vorticity in the lower layer and so no Rossby 
wave is possible. 

Although Griffiths & Linden (1982) and Killworth et al. (1984) pointed out that 
Phillips' model successfully explains the wavenumber of maximum growth, it seems 
to be difficult to distinguish R-K instability from baroclinic instability in Phillips' 
model using only the wavenumber for maximum growth rate, especially when the 
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FIQURE 15. Maximum growth rate for AH = 0.8. 

Wave type 

Rossby-Rossby 

Rossby-gravity 

Gravity-gravity 

Vertical interaction Horizontal interaction 

Baroclinic instability Barotropic instability 

R-K Instability 

(many papers) (many papers) 

(Griffiths & Linden 1982) 
(Killworth et al. 1984) 
(Stone* 1966, 1970) 
(Nakamura* 1988) 
(Present paper) 

(many papers) (Satomura 1981) 

Frontal instability (one-layer model) 
(Killworth & Stern 1982) 
(Kubokawa 1985) 
(Young et al. paper in preparation) 

K-H Instability Instability in a shear flow with Q = 0 

(Kubokawa 1986) 
(Hayashi & Young 1987) 

* Ageostrophic Eady model. 

TABLE 1. Categories of instability 

interface intersects the surface as in Griffiths & Linden (1982). Figure 15 shows the 
growth rate for a wider channel (AH = 0.8). Comparing figure 15 with figure 6, the 
difference in wavenumber for maximum growth rate between an R-K instability and 
a baroclinic instability becomes smaller as AH increases. 

The frontal system with a positive potential vorticity gradient towards the front 
in the upper layer can be unstable even if the lower layer has infinite depth (one-layer 
model) (Killworth & Stern 1982). This type of instability is also studied by 
Kubokawa (1985). It can be interpreted in the present context by resonance between 
a frontal trapped Kelvin wave and a Rossby wave in one layer (W. R. Young, G. R. 
Ierley & S. Sakai, paper in preparation). In this case, the waves interact horizontally 
in contrast to the vertical interaction in the R-K instability discussed above. If we 
distinguish this instability from the R-K instability described, we have six categories 
of instability defined by type of resonating wave and spatial alignment of the waves 
(table 1). From this table, i t  is clear that R-K instability should be distinguished 
from the so-called ‘mixed instability’, which usually means one due to both 
baroclinic and barotropic instability. 
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FIGURE 16. The results of Orlanski (1966) (figure 10) redrawn in the non-dimensional units of the 
present model. The branch R overlies the branch E. The shaded areas indicate the complex 
eigenvalues (non-zero phase speed). 

A one-layer system with uniform potential vorticity can also be unstable when 
two gravity waves propagating in opposite directions resonate with each other. This 
type of instability has been studied by Satomura (1981), Kubokawa (1986) and 
Hayashi & Young (1987). 

Another two-layer frontal model was studied by Orlanski (1968). In his model, the 
interface intersects with the surface and the bottom. He found that the front is 
always unstable and there are several types of instability depending on the 
parameter. The R-K instability should be included in these instabilities. His result 
(figure 10 in his paper) is redrawn in figure 16 with the present notation. Although 
he explained that the unstable branch R corresponds to Rayleigh instability and H 
corresponds to (Kelvin)-Helmholtz instability, the branch R presumably corre- 
sponds to both instabilities (K-H instability when the Richardson number (Bi) is 
large, and Rayleigh instability when Ri is small) because: (i) the phase speed of the 
lowest K-H unstable mode should be zero, but the mode H has non-zero phase speed ; 
(ii) both instabilities are associated with the velocity shear across the interface; and 
(iii) the gravity effect, which stabilizes the interface and characterize the K-H 
instability, changes smoothly by changing the slope of the interface as the 
Richardson number changes. Therefore, the unstable mode R corresponds to K-H 
instability in the range of Froude number discussed in the present paper (F < 1). The 
K-H unstable mode R resonates with another stationary unstable mode E (baroclinic 
instability) and results in an unstable mode B with non-zero phase speed. This means 
that the unstable mode B consists of both Rossby waves and gravity waves. 
Furthermore, for the wider channel ( M = 0 . 8 )  in figure 15, the branch B in 
Orlanski’s model occupies almost the same parameter range as the R-K instability 
in the present model. Therefore the branch B seems to correspond to the R-K 
instability. 

R-K-type instability is also found in a continuously stratified model (ageostrophic 
version of the Eady model). Stone (1966, 1970) found some unstable modes with 
phase speed different from that of the average basic flow (note that the conventional 
baroclinic instability has the same phase speed as the average basic flow). It is 
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identified by Nakamura (1988) as an instability due to the inertial critical layer. He 
showed that this unstable mode is caused by an interaction between a vorticity mode 
trapped a t  the boundary and an inertial gravity mode which has intrinsic frequency 
of order f and is trapped in the inertial critical layer. 

Since !illRl % Gn,( for Rossby wave components, the Rossby-Rossby unstable 
mode mainly transfers momentum M ,  between different places where interacting 
Rossby waves exist. Similarly, the gravity-gravity unstable mode transfers 
momentum M g ,  because wgl 5> pRI for gravity waves. The Rossby-gravity unstable 
mode induces a transfer between M R  and Mg.  Therefore these six instabilities can be 
identified by a momentum analysis. It is difficult to identify the type of these 
instabilities from energy analysis because it depends on the frame of reference. The 
transferred disturbance momentum (M,  + M g )  always has an opposite shear to that 
of the basic flow. In the present case, disturbance momentum in the upper layer is 
always negative, and that in the lower layer is always positive for unstable 
modes. 

The R-K-type instability is also possible in the western boundary current in the 
ocean because the vertical difference in the mean velocity field is of the same order 
as the phase speed of internal gravity waves, O(l  m/s). If the potential vorticity is 
conserved along streamlines in the western boundary until the current becomes 
unstable and the dissipation process becomes dominant, potential vorticity in the 
western boundary current should be homogenized as well as the interior region. If 
this happens in the western boundary, it is hard to imagine that the conventional 
baroclinic instability initiates the meander of the current. 

1 1. Conclusion 
A criterion for instability of a two-layer model is obtained using a physical wave 

coordinate system. The flow is unstable if there is a pair of wave components such 
that (i)  they are propagated in the opposite direction to the basic flow (GI G2 < 0 ) ,  (ii) 
they have almost the same Doppler-shifted frequency (GI + kU, z Lj2 - kU,), (iii) they 
can interact with each other (enm + 0). Since the wave component has disturbance 
momentum in the direction of the intrinsic phase speed, the disturbance momentum 
for the unstable mode is cancelled out by the summation of the disturbance 
momentum for the constituent wave components. This is consistent with the results 
of Hayashi & Young (1987). 

A new type of instability (R-K instability) is found in an ageostrophic version of 
Phillips’ model. The new instability is caused by resonance between a Kelvin wave 
and a Rossby wave, which have disturbance momenta in opposite directions. The 
Rossby wave is almost completely in geostrophic balance while the Kelvin wave is 
the same as in a one-layer system. This instability is presumably the mechanism of 
the frontal instability observed by Griffiths & Linden (1982) and studied by Paldor, 
Killworth, Stern etc. Although the present model does not include the horizontal 
shear in the upper layer, the results are consistent with these studies. 

Including this type of instability, we have defined six categories of instabilities 
(table l ) ,  according to the type of interacting wave and alignment of the waves. 
These instabilities can be identified by a momentum analysis. The energy analysis 
does not give a unique identification of the instabilities because it depends on the 
frame of reference. Therefore, the mechanism of the instability should be discussed 
in terms of disturbance momentum rather than the energy. 

Ageostrophic baroclinic instability with non-zero phase speed is also found in the 
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numerical calculations. This instability is caused by resonance between different 
modes of the baroclinic instability. Although the modes involved in this instability 
are almost in geostrophic balance, quasi-geostrophic theory does not capture this 
instability. This is because i t  relies on a symmetry which is broken at order Rossby- 
number squared. 
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useful suggestions and fruitful discussion. Mr Bud Brown is acknowledged for 
drawing some figures. This work was carried out at the Department of Earth, 
Atmospheric and Planetary Sciences, MIT. The author was supported by Office of 
Naval Research grant no. N00014-85-G-02412. 

Appendix A. Derivation of (19) from (9) 

corresponding eigenvector (15), i.e. 
Suppose &:n is an eigenvalue of the adjoint equation (14) and el, is the 

- 

0 7 ~ n ~ l n - A l . ~ l ,  = 0, (A l a )  

Multiplying (9) by 'en and integrating ovw the channel results in 

Dl e z - & d y -  e:.Al.&dy = s s  
Using (17)  and (A l ) ,  the second term in (A 2 )  is reduced to 

q',T*Al*&dy = (A,.Cl,)*T*&dy = 3 , , d l , X n .  (A 3) 

2 2  = ( ~ 2 ( v ) 7  ~2(y)43*(YHT 

s s 
Similarly to (18), 2, is written as 

where 

Blxn-Glnxn = D J E n m Y m ,  
m 

I n  the same way, we obtain an equation for the lower layer 
The absolute value of enm is limited by 

where the Cauchy-Schwarz inequality and (166) are used. 
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Appendix B 
Equation (39) can be written in the form: 

A - x  = ~ B * x ,  (13 l u )  

(13 1 b) 

Note that the notation for A,  B, and x is different from the text. Because eigenvalues 
of B contains two zero eigenvalues, we have two sets of infinite eigenvalues for the 
problem (B 1). These eigenvalues correspond to a barotropic pressure field (pl + p 2 ) ,  
which is dependent on the other variables. Therefore we can reduce the six equations 
with six variables (B I )  to four equations with four variables, which contains four 
sets of waves (two sets of gravity waves and two sets of Rossby waves). 

Eliminating ji3 from equations for Gl and 12, in (38), we have 

- iuCl + ikF& + y1 = 0,  - iuC2 - ikFC, + y2 = 0, (B 2a, 6 )  

where C 3 -  - ikv3-a,u3, y3 = ikuj+a,v,. (B 3% b) 

ikF($2-$1) = -F(v”,-V”,)+(l-Fy) y l + ( l  +Fy)y , ,  (B 4 a )  

-iu($z-$l) = -F(v”,+v”,)+(l -Fy)yl-( l  +Fy)y , .  (B 46)  

-ioF(2il -G2) = ( 1  -Fy) y1 + (1 +Fy)  y2 - ikF2(G1 +G2) .  (B 5) 

Using equations for pressure in (39), we have 

Substituting equations for u, in (39) into (B 4b) ,  we have 

Substituting (B 4b)  into (B 4a), we have 

-iw(F(v”,-S2)-(1-Py)y,-(1+Fy)y2} 

= ik{F2(v^, + S2) -F(  1 -Fy) y, + F(  1 + Py) y,}. (K 6) 

Substituting (B 3) into (B 2), (B 5) and (B 6) ,  we have four first-order (in time) 
equations with four variables (G,, 4,, S,, G2). These equations are solved numerically 
following Hayashi & Young (1987) with boundary condition 

Sj = 0 at y = If: Y,,,. 

The y-interval is discretized by Ay = Y,,,/N and the variable ui is defined a t  N +  1 
points (including the points on the wall) across the channel. The variable v, is defined 
at N -  1 points excluding the boundary because vj is fixed there. The equations are 
evaluated a t  the centre of two points for u, and v, (N points). To survey a wide range 
of the parameters, most computations were done with relatively low resolution 
(N = 8) .  The results were tested against a higher resolution run (N = 16,22) at some 
parameters. In  general, the computation with N = 8 has sufficient accuracy for lower 
modes. 
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